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ABSTRACT

Motivation: Identifying piwi-interacting RNAs (piRNAs) of non-model
organisms is a difficult and unsolved problem because piRNAs lack
conservative secondary structure motifs and sequence homology in
different species.
Results: In this article, a k-mer scheme is proposed to identify piRNA
sequences, relying on the training sets from non-piRNA and piRNA
sequences of five model species sequenced: rat, mouse, human,
fruit fly and nematode. Compared with the existing ‘static’ scheme
based on the position-specific base usage, our novel ‘dynamic’
algorithm performs much better with a precision of over 90% and
a sensitivity of over 60%, and the precision is verified by 5-fold
cross-validation in these species. To test its validity, we use the
algorithm to identify piRNAs of the migratory locust based on 603 607
deep-sequenced small RNA sequences. Totally, 87 536 piRNAs of
the locust are predicted, and 4426 of them matched with existing
locust transposons. The transcriptional difference between solitary
and gregarious locusts was described. We also revisit the position-
specific base usage of piRNAs and find the conservation in the end
of piRNAs. Therefore, the method we developed can be used to
identify piRNAs of non-model organisms without complete genome
sequences.
Availability: The web server for implementing the algorithm and the
software code are freely available to the academic community at
http://59.79.168.90/piRNA/index.php.
Contact: lkang@ioz.ac.cn
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Non-coding RNAs (ncRNAs) are functional RNA molecules that
are not translated into proteins, including highly abundant and
functionally important RNAs such as transfer RNA (tRNA) and
ribosomal RNA (rRNA), as well as other RNAs such as snoRNAs,
microRNAs, siRNAs and piRNAs and the long ncRNAs. Among
them, the ones of typically 20∼ 30 nt in length are called small
RNA. Piwi-interacting RNA (piRNA) is the largest class of small
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RNA molecules expressed in animal cells, especially in germ cells,
and 25∼32 nt long in general (Aravin et al., 2006; Girard et al., 2006;
Grivna et al., 2006). piRNAs form RNA–protein complexes through
interactions with PIWI proteins, and has no clear secondary structure
motifs (Kandhavelu et al., 2009), and its length is slightly longer
than miRNA. Compared with miRNAs, piRNA is lack of primary
sequence conservation, and the presence of a 5′ uridine is common
in both vertebrates and invertebrates. piRNAs in the nematode have
a 5′ monophosphate and a 3′ modification that block either 2′ or 3′
oxygen (Ruby et al., 2006), and are confirmed to exist in fruit fly (Yin
and Lin, 2007; Vagin et al., 2006), zebrafish (Houwing et al., 2007),
mice (Kirino and Mourelatos, 2007; Watanabe et al., 2006) and rats
(Houwing et al., 2007). PIWI/ARGONAUTE (also known as PAZ-
PIWI domain or PPD) protein family is evolutionarily conserved
owing to its functional significance in stem cell self-renewal and
germline development (Vagin et al., 2006).

piRNA derives from the post-transcriptional amplification ‘Ping-
Pong Model’, and it may be involved in germ cell formation,
germline stem cell maintenance, spermiogenesis and oogenesis
(Brennecke et al., 2007; Cox et al., 1998; Thomson and Lin, 2009).
Therefore, available piRNA data mainly come from model species
with complete genome sequences. A general approach to detecting
piRNA is based on the combination of immunoprecipitation and
deep sequencing in model and sequenced organisms (Yin and Lin,
2007). However, the lowly expressed or issue-specific piRNAs
might be missed using this method. In addition, some of piRNAs are
not produced by ‘Ping-Pong Model’ (Das et al., 2008; Robine et al.,
2009). Thus, computational methods may provide an alternative
approach to detect piRNAs, which can summarize general properties
from known piRNAs and then train them to predict novel piRNAs.

Betel et al. (2007) first use the position-specific usage of 10
upstream bases and 10 downstream bases of 5′ U to construct a
vector with 21×4 components, by which they characterized and
identified mouse piRNAs with a precision of 61–72%. They also
found that mouse piRNAs have some position-special properties,
such as G or A at +1 position, A at +4 position and a slight
underrepresentation of G at −1 position. However, their method
has limitations in predicting piRNAs from the organism without
genome information (Lakshmi and Agrawal, 2008). Meanwhile, this
method cannot efficiently detect those piRNAs derived from 3′ UTR
of mRNA, which are not produced by ‘Ping-Pong Model’ (Das
et al., 2008; Robine et al., 2009). Furthermore, piRNA sequences
are quite divergent among different species (Lakshmi and Agrawal,
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2008; Seto et al., 2007). Most general methods, such as BLAST
and MEME, are inappropriate for piRNA prediction. For example,
we cannot find any homologous piRNAs between fruit fly and
other species with BLAST; and not any conserved motifs are found
in piRNAs with MEME. Therefore, more efficient computational
methods are urgently demanded. The k-mer scheme is widely used
to characterize biosequences (Burge et al., 1992; Gutierrez, 1993;
Karlin and Ladunga,1994), because patterns using k-mers have been
found to be species or taxon special (Karlin et al., 1994; Karlin and
Mrazek, 1997; Madera et al., 2010).

It is important to note that, the Solexa small RNA data may
also include miRNA, piRNA, as well as some short fractions of
snoRNA, snRNA, long ncRNA and un-annotated mRNAs, which
have similar lengths to piRNA. In fact, NONCODE version 2.0
(Liu et al., 2005) has 9257/20 7765 = 4.46% ncRNAs shorter than
25 nt, suggesting that most ncRNA may produce a sequence fraction
with similar length to piRNA. Moreover, possible background noise
also exists, including the background information introduced by
Solexa, the degraded RNA fragments in sample preparation and
the noise caused by the random match of data with genome.
Studies of Wei et al. (2009) demonstrated that there are about
30–40% short sequences in 603 607 possible candidates of locust
small RNAs are unannotated. On the other words, there are about
200 000 unannoted small RNAs in which there would be a huge
number of piRNAs and other short sequences. Obviously, these
remaining sequences could cover real piRNAs, the fractions of
long ncRNAs, unannotated mRNAs and noise produced by Solexa.
Therefore, piRNAs in Solexa small RNA data cannot be identified
merely based on their lengths. In order to predict piRNAs, an
efficient algorithm is required to distinguish the real piRNA from
the sequences within similar range of length. Here, we used all the
1364 1–5 nt strings and an improved Fisher Discriminant algorithm
to characterize piRNA sequences in five model species: rat, mouse,
human, fruit fly and nematode. The novel algorithm reached a
prediction precision of over 90% and a sensitivity of over 60%
in these species. We applied this algorithm to the deep-sequenced
small RNA data (Wei et al., 2009) of the migratory locust (Locusta
migratoria), which is an important agricultural pest and model
species for physiology, neuroscience and behavior. This method
successfully identified 87 536 piRNAs of the locust with the same
precision and sensitivity as the five model species. Therefore, the
method proposed in this study can be used to predict piRNAs for
both model and non-model organisms.

2 METHODS

2.1 k-mer string
In bioinformatics, k-mers usually refer to specific k-tuples or k-grams of
nucleic acid or amino acid sequences that can be used to identify certain
regions within biomolecules like DNA or proteins. Either k-mer strings as
such can be used for finding regions of interest or k-mer statistics giving
discrete probability distributions of a number of possible k-mer combinations
are used. To characterize piRNA sequences, we use all the 1–5 nt strings,
including 4 1mer strings: A, G, C and T, 16 2mer strings, 64 3mer strings,
256 4mer strings, 1024 5mer strings, and totally 1364 strings. A bio-sequence
can be characterized by a vector consisting of frequencies of the 1364
k-mer (k = 1, 2, 3, 4, 5) strings. Because there are significant differences
of string usages between piRNA and non-piRNA sequences, the 1364 D
vectors provide a novel approach to distinguish piRNA from non-piRNA.

2.2 Construction of training set
Constructing training set to computationally detect piRNA with Fisher
discriminant algorithm (Fisher, 1936), we use two groups of samples: a
positive group consisting of true piRNA sequences from five model species
and a negative group of non-piRNA sequences. The positive dataset consists
of known piRNA sequences of five species: rat, mouse, human, fruit fly
and nematode. piRNAs from the first three species are downloaded from
NONCODE version 2.0 (Liu et al., 2005), and piRNAs from the last two
species are obtained from NCBI (nematode: gi222138841 ∼ 222138290;
fruit fly: gi157362817 ∼ 157361675). In total, we obtain 173 090 positive
samples, including 32 046 human piRNAs, 72 747 mouse piRNAs, 66 758 rat
piRNAs, 552 Caenorhabditis elegans piRNAs and 987 Drosophila piRNAs.

The negative samples are derived from NONCODE version 2.0
(Liu et al., 2005). NONCODE is a database of a wide variety of ncRNA
classes (small and long ncRNAs) from 861 organisms covering all kingdoms
of life (eukaryotes, eubacteria, archea and viruses). Data are from three
sources: (i) manual extracts from literature, (ii) automatically filtered and
manually confirmed GenBank sequences and (iii) experimental data from
Chen’s laboratory (Giulia et al., 2009). In detail, it includes ‘miRNA’,
‘piRNA’, ‘mlRNA’, ‘snoRNA’, ‘snRNA’, ‘tmRNA’, ‘SRP RNA’, ‘gRNA’,
‘sbRNA’, ‘snlRNA’, etc. Thus, it is qualified as the source for the ncRNA
study.

There are 34 675 non-piRNA non-coding RNA sequences, and it should
be noted that most of them are much longer than positive sequences. At first,
the 34 675 non-piRNA ncRNA were selected as negative samples. Then,
to make the number of negative samples close to that of the positive
samples, we generated 158 646 random sequences as negative samples from
the 34 675 non-piRNA ncRNA sequences by the following method. For
each of the 34 675 non-piRNA sequences, we shuffled it 10 000 times to
destroy any potential functional structures, then randomly selected start
points and generated no more than 5 subsequences with a length of 18–32 nt.
Since there are 9257/207 765 = 4.46% ncRNAs shorter than 25 nt in ncRNA
database NONCODE version 2.0 (Liu et al., 2005), we randomly produced
8678/193 321 = 4.49% sequences shorter than 25 nt to make the length
distribution of negative samples similar to that of a real database.

In detail, the random processes generating 158 646 negative samples cover
three steps. Firstly, we divided each sequence into 40 nt-long non-overlap
blocks, and chose no more than five blocks as random candidate blocks.
Secondly, the length distribution was confined to 18–32 nt, which has little
effect on the result because we only use the frequency of strings. Finally,
the negative sequences can start at every possible position in a selected
block.

2.3 Improved Fisher Algorithm in a 1364 D space
The Fisher discriminant algorithm uses a training set formed by these
two groups of samples to obtain a discriminant vector w and threshold
y0.The Fisher linear discriminant equation in this case represents a super-
plane in the 1364 D space, described by a vector w, which is extremely
simple in the two-class case. Let Group 1 (denoted by G1) correspond
to piRNA samples, Group 2 (denoted by G2) non-piRNA samples and
xg

k = (xg
k1,x

g
k2,...,x

g
k1364) the 1364 D vector defined above of the k-th sample

in group g (g = 1, 2), where k =1,2,...,ng (n1,n2 are the numbers of samples
in G1 and G2, respectively). We calculate the average vector mg for each
group: mg = 1

ng

∑ng
k=1 xg

k ,g=1,2. Denoting by Sw the sum of the covariance

matrices of two groups, we have Sw =∑2
g=1

∑ng
k=1(xg

k −mg)(xg
k −mg)τ ,g=

1,2. The Fisher vector w is simply determined by the following equation:
w=S−1

w (m1 −m2), where S−1
w is the inverse of the matrix Sw. Thus, for any

1364 D vector xg
k = (xg

k1,x
g
k2,...,x

g
k1364), k =1,2, ...,ng. its projective point

is yg
k =wτxg

k . Notice that w is not unique in the sense that w multiplied by
a constant is still acceptable. Without loss of generality, we choose such
w satisfying ||w||=1. Based on the data in the training set, an appropriate
threshold y0 is determined to make the piRNA/non-piRNA decision. The
threshold y0 is determined by the formula: y0 = 1

2 ( n1m̃1+n2m̃2
n1+n2

+ 1
2 (m̃1 +m̃2)),
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where m̃g = 1
ng

∑ng
k=1 yg

k ,g=1,2. Once the Fisher vector w and the threshold

y0 are obtained, the decision of piRNA/non-piRNA in the test set is simply
performed by the criterion of f (x)>0/f (x)<0, where f (x)=wτx−y0. To
improve the Fisher algorithm, we introduce the ‘cutoff’, which in theoretical
physics means the maximal (or minimal) value of energy, momentum or
length, so that the objects with even smaller (or larger) values than these
physical quantities are ignored. A popular method in increasing precision is
to set higher cutoff values (Candolfi et al., 1993; Huang et al., 2006). The m̃2

is the mean value of the projective points [i.e. f (x)=wτx] of non-piRNAs.
Here, we set Nstd to be the SD of the projective points of non-piRNAs. With
the two variables, we may improve the Fisher discriminant algorithm. In
detail, we change the discriminant formula into the new one shown below.

f (x)=wτx−m̃2 −t×Nstd,

and once the Fisher vector w is obtained, the decision of piRNA/non-piRNA
is performed by the criterion of f (x)>0 and f (x)<0, respectively. Obviously,
the cutoff value is m̃2 +t×Nstd.

3 RESULTS AND DISCUSSION

3.1 Different string usage of piRNA and non-piRNA
piRNA and non-piRNA sequences have significant differences in
string usage. First, for each sequence (piRNA or non-piRNA), we
calculate the frequencies of all the 1364 k-mer (k =1,2,3,4,5)
strings, and construct a 1364 D vector to characterize the sequence.
Then, we use rank sum test to determine which string usage is
significantly different between piRNAs and non-piRNAs. With a
significance level of 10−300, we found that the usage of 1337 strings
(Supplementary Material S1) is significantly different between
piRNAs and non-piRNAs. Therefore, the k-mer string scheme can
spot the difference between piRNAs and non-piRNAs, and the
difference can be visualized by comparing the frequencies of each
string in piRNAs and non-piRNAs (Fig. 1). To identify the most
significant strings whose usage are different between piRNAs and
non-piRNAs, we define the string frequency relative difference as
the ratio of absolute value of string frequency difference to the sum
of string frequency in piRNAs and non-piRNAs. For example, for
string ‘TGCTG’, its string frequency relative difference is

|fpiRNA(TGCTG)−fnonpiRNA(TGCTG)|
(fpiRNA(TGCTG)+fnonpiRNA(TGCTG))

,

where fpiRNA(TGCTG) is the frequency of string TGCTG appeared
in piRNAs. There are 32 strings with string frequency relative
difference larger than 0.7 (Supplementary Material S2), while only
the string ‘TGCTG’ with a higher frequency in piRNAs than in
non-piRNAs, perhaps because ‘TGCTG’ is the first 5 bases of many
piRNAs. The left 31 strings all have low expression in piRNAs, but
their biological significance requires further exploration.

3.2 Position-specific base usage of piRNA
The size distribution of all known piRNAs largely varied ranging
from 18 nt to 32 nt, and mainly distributed in 28, 29, 30 and
31 nt which cover 72.32% known piRNAs (Supplementary Material
Fig. S1). With the comparison of piRNAs and non-piRNAs,
we revisited the position-specific properties in detail. Then, we
calculated the frequencies of four bases in each position, and
identified conserved position-specific bases at the beginning and
the end of piRNAs (Fig. 2A), besides G or A at +1 position, A
at +4 position and a slight underrepresentation of G at −1 position,

Fig. 1. Average frequencies of 1337 strings in piRNAs and non-piRNAs.
The 1337 strings are used differently between piRNAs and non-piRNAs,
and the difference is visualized by comparing the average frequencies of the
1337 strings in two groups of samples. Here, the red and black lines represent
piRNAs and non-piRNAs, respectively.

A

B

Fig. 2. (A) The frequencies of 32×4 position-specific bases in piRNA.
Conservative base usages are found in the first 10 and the last three positions
of piRNAs. (B) With a significance level of 10−100, the usage of 21 position-
specific bases is different between piRNAs and non-piRNAs. The first 10
positions, except for the 8th and 9th positions, all have conserved base usage.

especially in the 30, 31 and the 32 position. Furthermore, we detected
position-specific base usages by using rank sum test. In the analysis,
we only considered the beginning 21 base positions of piRNA
to cover all possible piRNA sequences. Setting significant level
to be 10−100, we found that 21 position-specific base usages are
significantly different between piRNA and non-piRNA. They are
a1, g1, c1, t1, g2, t2, g3, c3, t3, a4, t4, a5, g5, t5, a6, c6, t6, t7,
a10, c10 and c12. The difference can be visualized by comparing
the frequencies of these position-specific bases in piRNAs and
non-piRNAs (Fig. 2B).
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Table 1. Definitions of precision and sensitivity of prediction

Predicted positives Predicted negatives

Actual positives TP FN
Actual negatives FP TN
sn sn= TP

TP+FN
sp sp= TP

TP+FP

TP, True positives; FP, False positives; TN, Ture negatives; sn, Sensitivity; sp, Precision.

3.3 Cross-validation tests
Prediction precision and sensitivity are widely used to evaluate the
performance of an algorithm. Sensitivity is the ratio of number
of true positive samples to that of actual positive samples, and
the precision is the ratio of number of true positive samples to
those of predicted positive samples. Their definitions are listed in
Table 1. We performed five cross-validation tests in five species:
rat, mouse, human, fruit fly and nematode. In order to evaluate the
precision and sensitivity of current algorithm in predicting piRNA
for a new species, we used the piRNAs of four species as training
set and the piRNAs of another species as test set. Each time we
use 50 000 pairs of piRNA and non-piRNA sequences derived from
four species as drill set to predict piRNAs of another species. An
improved Fisher formula:f (x)=wτx−m̃2 −t×Nstd can promote the
prediction precision. As t augments from 0 to 3.4, the precisions of
five cross-validation tests are significantly increased. When t = 2,
the precisions for all species are above 90% (Fig. 3A). In this
study, we used the m̃2 +2×Nstd as piRNA cutoff value, to ensure
the piRNA prediction precision over 90%. To compare current
algorithm with that proposed by Betel et al. (2007), 36 373 mouse
piRNAs were taken as training positive set to predict the remaining
36 374 piRNAs, when t =0, precision is 68.41%, and sensitivity is
99.31% ; setting t =2, precision is 95.53%, and sensitivity is 72.47%.
However, the prediction precision of Betel et al. (2007) is only 61%,
suggesting that our algorithm may still be useful for the species with
full genome information.

3.4 The method validity tests and locust piRNA
prediction

Wei et al. (2009) reported the small RNA transcriptome of the
migratory locust (Locusta migratoria) from gregarious and solitary
phase libraries containing 603 607 sequences and a subset of small
RNA in a peak at 25–29 nt. These data provide a valuable source
to test the validity of new method and to identify piRNAs of
the migratory locust. With the improved Fisher Algorithm, using
120 000 piRNAs derived from the five model species mentioned
above and 120 000 non-piRNAs as drill set, we identified 87 536
locust piRNAs with length larger than 24 nt (Supplementary
Material), including 12 386 gregarious-specific piRNAs, 69 151
solitary-specific piRNAs and 5999 piRNAs for both two phases.
The analysis of prediction sensitivity showed that the sensitivity
decreases as t increases (Fig. 3A). Especially, when t = 2, the
sensitivities of most species (except for fruit fly) are 60–70%,
indicating that the 87 536 predicted piRNAs are only a fraction of all
locust piRNAs. Therefore, we estimated the total number of locust
piRNAs is about 130 000, which is less than that of Drosophila’s
piRNAs (Lakshmi and Agrawal, 2008). After analyzing the usage

A

B

Fig. 3. The relationship of t to precision and sensitivity of 5-fold cross-
validation tests. Here, ‘sn’ and ‘sp’ denotes the prediction sensitivity and
precision, respectively. Nematode: C.elegans; fruit fly: D.melanogaster; rat:
R.norvegicus; human: H.sapiens; mouse: M.musculus. (A) The dynamic
algorithm based on string usage has an increasing precision and a decreasing
sensitivity with t increasing. When t =2, all precisions are above 90% and
most sensitivities (except for fruit fly) are 60–70%. (B) The static algorithm
based on the position-specific base usage has an increasing precision and a
decreasing sensitivity with t increasing. When t =2.5, most precisions reach
90%, but sensitivities are only about 10%.

Fig. 4. Average frequencies of 1337 strings in piRNAs of the five model
organisms and 87 536 locust piRNAs. The two groups of string usages are
similar because the two curves are very close. Comparing with the significant
difference between piRNAs and non-piRNAs as shown in the Figure 1, the
algorithm firstly detects the different orientations of string usage between
positive and negative samples, and then determines the sequences with
amplified positive orientations as piRNAs.

of the 1337 strings in the 87 536 predicted locust piRNAs, we
found that the usage of the strings in locust piRNAs are consistent
with that of the five model organisms (Fig. 4). The principle
of the Fisher discriminant algorithm improved is to detect the
different orientations of string usage between positive and negative
samples, and the sequences with amplified positive orientations
will be predicted as piRNAs. The method using k-mer frequency
‘dynamic’ we proposed is different from the method using position-
specific base frequency ‘static’ method (Betel et al., 2007). When
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Table 2. The 15 strings that are differently used in two phases with a
significance level of 10−100

k-mer Base strings

1mer C
2mer CC
3mer ACC,GCC,CCA,CCC,CCT,CTC
4mer CACC,CCTT
5mer CTGCA,CTCTG,TCCGA,TTGCT,TTGTA

comparing the advantage of the two methods through the relation
of precision/sensitivity versus t values, the ‘dynamic’ method
outperforms the ‘static’ method constructing an 84 D vector (21
positions ×4 bases, to include all piRNA sequences) in identifying
piRNAs (Fig. 3B). The ‘dynamic’ method can identify 1337 strings
in piRNAs and non-piRNAs with a significant level of 10−300, while
‘static’ method can only identify 21 position-specific base usages
with a significance level of 10−100.

3.5 The difference of piRNAs between the solitary and
gregarious locusts

We found that 15 strings are differently used between two phase
locusts, and the expression of piRNAs in solitary locust is much
higher than in gregarious ones. Differences between solitary and
gregarious locusts are contributed to gene expression and regulation
level modulated by piRNA (Wei et al., 2009), because they have the
same genome sequence. In the 87 536 locust predicted piRNAs, there
are 12 386 gregarious-specific piRNAs and 69 151 solitary-specific
piRNAs. Fifteen strings in gregarious and solitary-specific piRNAs
display significantly different utilization rate with a significance
level of 10−100 (Table 2).

This difference of string utilization rate can be visualized by
comparing the average frequencies of the 15 strings in solitary and
gregarious locusts (Fig. 5A). The most significant difference is the
high content of C in the gregarious locust piRNAs. Based on the
87 536 predicted piRNAs in the locust, the distribution patterns
(Fig. 5B) of piRNA number versus the length and transcriptional
profiling of solitary and gregarious locusts are consistent with the
results reported by Wei et al. (2009). This result further confirms
the robustness of our method in detecting piRNAs. There are 5999
piRNAs shared by two phase locusts, and the piRNAs in solitary
locusts have more reads than in gregarious locusts. Of total, 3912
of piRNAs have more reads in solitary locusts, 1435 piRNAs have
equal reads in two phases and only 652 piRNAs have more reads in
gregarious than in solitary locusts (Supplementary Material Fig. S2).
These highly expressed piRNAs may play an important role in
maintaining strong propagation of the solitary locusts. We calculated
ratios of piRNA reads in solitary to gregarious locusts, and found
that the ratios of 84 piRNAs reads are above 30 (Supplementary
Material). The 84 piRNAs are ideal candidates for further piRNA
interference in investigating piRNAmodulation mechanism of phase
transition in locusts.

3.6 Match the 87 536 predicted piRNAs with
transposons

There are 4426 of 87 536 locust piRNAs matched with locust
transposons from the locust transcriptome data (Kang et al.,

A

B

Fig. 5. The difference between solitary and gregarious locust piRNAs.
(A) 15 strings are differently used between two phases with a significance
level of 10−100, and this difference is visualized by comparing the frequencies
of the 15 strings in two phases. The most significant difference is the high
content of C in gregarious locust piRNAs. (B) The distribution of piRNA
reads versus length in solitary and gregarious locust. The solitary locusts
always have more reads in each length than gregarious ones.

unpublished data). Not all transposons are transcribed in the
locust transcriptome data, so we only get 6635 locust transposons.
When the locust piRNAs are compared with the transposons, 4426
matches are found and over half transposons are hit (Supplementary
Material). As expected, most of them have the largest values of
F(x)=wτx among all 603 607 candidate sequences (Fig. 6). In fact,
the figure presented the framework of this article, which showed the
distributions of projective points for 120 000 pairs of drill sequences,
603 607 deep-sequenced candidate small RNA sequences, 87 536
predicted locust piRNAs, and 4426 locust piRNAs matched with
locust transposons.

4 CONCLUSION
In this article, we implemented a k-mer algorithm to predict piRNAs.
Compared with previous approaches, the new method does not
require a reference genome and gives a much better performance on
piRNA prediction. We also improved the Fisher algorithm by setting
different cutoffs and elevating the precision rate. The basic work is to
obtain the Fisher vector w, the mean value m̃2 and the SD Nstd of the
negative samples. Then, a sequence represented by a 1364 D vector
x can be regarded as a piRNA if its wτx is larger than m̃2 +2×Nstd.
Using this new scheme, we obtained 87 536 putative piRNAs from
the locust, which would be very helpful in studying the phase
transition mechanism of insects, especially hemimetamorphosis
insects. Moreover, the 84 locust piRNAs, which have the largest
ratio of solitary to gregarious reads, and the 4426 locust piRNAs
matched with existing transposons may provide excellent candidates
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Fig. 6. The distribution of projective points representing small RNAsAsmall
RNA sequence is first characterized by a 1364 D vector, and then further
mapped to a projective point by Fisher formula F(x)=wτx. This figure
shows the distributions of projective points of 120 000 pairs of drill sequences
(piRNAs and non-piRNAs), 603 607 deep-sequenced candidate small RNA
sequences, 87 536 predicted locust piRNAs and 4426 locust piRNAs matched
with the locust transposons. From the top down, the framework of this article
is presented.

for studying phase transition via locust transcriptome and RNAi
experiments. On the other hand, the results provided important cues
understanding the molecular mechanism of fecundity difference
between solitary and gregarious locusts. Most notably different from
other methods in literatures, the novel prediction approach is based
on the general property of string usage in piRNAs, which is extracted
from all available piRNAs. We believe that this method can be
widely used to predict piRNAs from both model and non-model
organisms.
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